Linear Algebra I

13/04/2022, Wednesday, 18:45 - 20:45

1 Linear equations

(15 + 5 = 20 pts)

Consider the linear equation

$$\begin{bmatrix} 1 & 3 & 5 & -2 \\ 1 & 4 & 6 & -2 \\ -1 & -1 & -3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} a \\ b \\ b - 2a \end{bmatrix}$$

where a and b are real numbers.

- a. Find all values of a and b for which the equation is consistent. For these values find the general solution of the equation.
- b. Find all values of a and b for which the equation has a unique solution.

2 Vector spaces

(3+4+3+6+6+8=30 pts)

Consider the vector space P_4 (the set of polynomials of degree less than 4). Let $S \subseteq P_4$ be defined as

$$S := \{ p(x) \in P_4 \mid p(x) = x^3 p(\frac{1}{x}) \}.$$

- a. Show that S is a subspace of P_4 .
- b. Find a basis for S.
- c. Find the dimension of S.

Let $T: P_4 \to P_4$ be defined as

$$T(p(x)) := p(x) + x^2 p'(\frac{1}{x})$$

where p'(x) denotes the derivative of p(x).

- d. Show that T is a linear transformation.
- e. Determine ker(T).
- f. Find the matrix representation of T with respect to the ordered basis $\{1, x, x^2, x^3\}$.

Let $M \in \mathbb{R}^{p \times q}$ and consider the partitioned matrix

$$N = \begin{bmatrix} I_p & M \\ M^T & I_q \end{bmatrix}.$$

- a. Show that N is nonsingular if and only if 1 is not an eigenvalue of MM^T .
- b. Suppose that N is nonsingular. Find N^{-1} .

4 Determinants, eigenvalues, and diagonalization

(2+2+4+6+6=20 pts)

Consider the matrix

$$M = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 3 & -1 \\ 0 & 0 & \alpha \end{bmatrix}$$

where α is a real number.

- a. Find the determinant of M.
- b. Find all values of α for which M is nonsingular.
- c. Find the eigenvalues of M.
- d. Find all values of α for which M is diagonalizable.
- e. Let $\alpha = 1$. Find a nonsingular matrix T and a diagonal matrix D such that $M = TDT^{-1}$.

10 pts free